

The LWE problem from lattices to cryptography

Damien Stehlé

ENS de Lyon

Šibenik, June 2015

- Almost all of its instances must be hard to solve. Attacks must be too expensive.
- Its instances must be easy to sample.

The algorithms run by honest users should be efficient.

• The problem must be (algebraically) rich/expressive. So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.

- Almost all of its instances must be hard to solve.
 Attacks must be too expensive.
- Its instances must be easy to sample.

The algorithms run by honest users should be efficient.

• The problem must be (algebraically) rich/expressive. So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.

- Almost all of its instances must be hard to solve.
 Attacks must be too expensive.
- Its instances must be easy to sample.

The algorithms run by honest users should be efficient.

• The problem must be (algebraically) rich/expressive. So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.

- Almost all of its instances must be hard to solve.
 Attacks must be too expensive.
- Its instances must be easy to sample.

The algorithms run by honest users should be efficient.

 The problem must be (algebraically) rich/expressive.
 So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.

The Learning With Errors problem

Informal definition

Solve a random system of *m* noisy linear equations and *n* unknowns modulo an integer *q*, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs \$\mathcal{O}\$ (mn log q).
 Very often, \$m = \mathcal{O}\$ (n log q), so this is \$\mathcal{O}\$ ((n log q)²)
- Very rich/expressive:

encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWeI3], etc.

The Learning With Errors problem

Informal definition

Solve a random system of *m* noisy linear equations and *n* unknowns modulo an integer *q*, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs \$\mathcal{O}\$ (mn log q).
 Very often, \$m = \mathcal{O}\$ (n log q), so this is \$\mathcal{O}\$ ((n log q)²).
- Very rich/expressive:

encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.

The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs \$\mathcal{O}\$ (mn log q).
 Very often, \$m = \mathcal{O}\$ (n log q), so this is \$\mathcal{O}\$ ((n log q)²).
- Very rich/expressive:

encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.

- Introduce LWE.
- Show the relationship between LWE and lattices.
- Use LWE to design a public-key encryption scheme.
- Give some open problems.

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

• Definition of the LWE problem

- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Continuous Gaussian of parameter s:

$$\begin{vmatrix} D_s(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^2}{s^2}\right) \\ \forall x \in \mathbb{R} \end{vmatrix}$$

Continuous Gaussian of parameter s:

$$\begin{array}{l} D_s(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^2}{s^2}\right) \\ \forall x \in \mathbb{R} \end{array}$$

Discrete Gaussian of support \mathbb{Z} and parameter *s*:

$$D_{\mathbb{Z},s}(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^2}{s^2}\right)$$

Continuous Gaussian of parameter s:

$$\begin{array}{l} D_s(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^2}{s^2}\right) \\ \forall x \in \mathbb{R} \end{array}$$

Discrete Gaussian of support \mathbb{Z} and parameter *s*:

- That's not the rounding of a continuous Gaussian.
- One may efficiently sample from it.
- The usual tail bound holds.

Let $n \ge 1$, $q \ge 2$ and $\alpha \in (0, 1)$. For all $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(\mathbf{s})$:

 $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q, \text{ with } \mathbf{a} \hookleftarrow U(\mathbb{Z}_q^n) \text{ and } e \hookleftarrow D_{\mathbb{Z}, \alpha q}.$

Search LWE

For all **s**: Given arbitrarily many samples from $D_{n,q,\alpha}(\mathbf{s})$, find **s**.

(Information-theoretically, $pprox n rac{\log q}{\log 1/lpha}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $D_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$.

(Non-negligible: $1/(n \log q)^c$ for some constant c > 0.)

The LWE problem [Re05]

Let $n \ge 1$, $q \ge 2$ and $\alpha \in (0, 1)$. For all $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(\mathbf{s})$:

 $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q, \text{ with } \mathbf{a} \hookleftarrow U(\mathbb{Z}_q^n) \text{ and } e \hookleftarrow D_{\mathbb{Z}, \alpha q}.$

Search LWE

For all **s**: Given arbitrarily many samples from $D_{n,q,\alpha}(\mathbf{s})$, find **s**.

(Information-theoretically, $\approx n \frac{\log q}{\log 1/\alpha}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $D_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$.

(Non-negligible: $1/(n \log q)^c$ for some constant c > 0.)

The LWE problem [Re05]

Let n > 1, q > 2 and $\alpha \in (0, 1)$. For all $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we define the distribution $D_{n,q,\alpha}(\mathbf{s})$:

 $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e) \in \mathbb{Z}_{a}^{n} \times \mathbb{Z}_{a}$, with $\mathbf{a} \leftrightarrow U(\mathbb{Z}_{a}^{n})$ and $e \leftrightarrow D_{\mathbb{Z}, \alpha q}$.

Search LWE

For all **s**: Given arbitrarily many samples from $D_{n,q,\alpha}(\mathbf{s})$, find **s**.

(Information-theoretically, $\approx n \frac{\log q}{\log 1/\alpha}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $\mathbf{s} \leftarrow U(\mathbb{Z}_a^n)$: distinguish between the distributions $D_{n,a,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_{a}^{n+1})$.

(Non-negligible: $1/(n \log q)^c$ for some constant c > 0.)

Decision LWE

Let $n \ge 1, q \ge 2$ and $\alpha \in (0, 1)$. For all $\mathbf{s} \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(\mathbf{s})$:

$$(\mathbf{a}, \langle \mathbf{a}, \mathbf{s}
angle + e), \text{ with } \mathbf{a} \hookleftarrow U(\mathbb{Z}_q^n) \text{ and } e \hookleftarrow D_{\mathbb{Z}, \alpha q}.$$

Decision LWE

With non-negligible probability over $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $D_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_q^{n+1})$.

We are given an oracle \mathcal{O} that produces independent samples from always the same distribution, which is:

- either $D_{n,q,\alpha}(\mathbf{s})$ for a fixed \mathbf{s} ,
- or $U(\mathbb{Z}_q^{n+1})$.

We have to tell which, with probability $\geq \frac{1}{2} + \frac{1}{(n \log n)^{\Omega(1)}}$.

Find $s_1, s_2, s_3, s_4, s_5 \in \mathbb{Z}_{23}$ such that:

Encryption

LWE

Introduction

 $s_1 + 22s_2 + 17s_3 + 2s_4 + s_5$ 16 mod 23 \approx $3s_1 + 2s_2 + 11s_3 + 7s_4 + 8s_5$ 17 mod 23 \approx $15s_1 + 13s_2 + 10s_3 + s_4 + 22s_5$ 3 mod 23 \approx $17s_1 + 11s_2 + s_3 + 10s_4 + 3s_5$ 8 mod 23 \approx $2s_1 + s_2 + 13s_3 + 6s_4 + 2s_5$ 9 mod 23 \approx $4s_1 + 4s_2 + s_3 + 5s_4 + s_5$ 18 mod 23 \approx $11s_1 + 12s_2 + 5s_3 + s_4 + 9s_5$ 7 mod 23 \approx

LWE hardness

We can even ask for arbitrarily many noisy equations.

Conclusion

Matrix version of LWE

Decision LWE:

Determine whether (\mathbf{A}, \mathbf{b}) is of the form above, or uniform.

Damien Stehlé

- If $\alpha \approx$ 0, LWE is easy to solve.
- If $\alpha \approx 1$, LWE is trivially hard.
- Very often, we are interested in

$$lpha pprox rac{1}{n^c}, \ q pprox n^{c'}, \ \ {
m for \ some \ constants \ } c' > c > 0.$$

• Why a discrete Gaussian noise?

Why is LWE interesting for crypto?

LWE is just noisy linear algebra: Easy to use, expressive.
LWE seems to be a (very) hard problem.

Two particularly useful properties:

- Unlimited number of samples.
- Random self-reducibility over s.

If q is prime and $\leq n^{\mathcal{O}(1)}$, there are polynomial-time reductions between the Search and Decision versions of LWE [Re05].

(We may remove these assumptions, if we allow some polynomial blow-up on α .)

Why is LWE interesting for crypto?

- LWE is just noisy linear algebra: Easy to use, expressive.
- LWE seems to be a (very) hard problem.

Two particularly useful properties:

- Unlimited number of samples.
- Random self-reducibility over s.

If q is prime and $\leq n^{\mathcal{O}(1)}$, there are polynomial-time reductions between the Search and Decision versions of LWE [Re05].

(We may remove these assumptions, if we allow some polynomial blow-up on $\alpha.)$

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

A public-key encryption scheme over $\{0,1\} \times C$ consists in three algorithms:

- KEYGEN: Security parameter $\mapsto (pk, sk)$.
- ENC: $(pk, M) \mapsto C \in C$.
- Dec: $(sk, C) \mapsto M' \in \{0, 1\}.$

Correctness

With probability ≈ 1 , $\forall M \in \{0,1\}$: $\text{Dec}_{sk}(\text{Enc}_{pk}(M)) = M$.

Security (IND-CPA)

The distributions of $(pk, ENC_{pk}(0))$ and $(pk, ENC_{pk}(1))$ must be **computationally indistinguishable**.

A public-key encryption scheme over $\{0,1\}\times \mathcal{C}$ consists in three algorithms:

- KEYGEN: Security parameter $\mapsto (pk, sk)$.
- ENC: $(pk, M) \mapsto C \in C$.
- DEC: $(sk, C) \mapsto M' \in \{0, 1\}.$

Correctness

With probability ≈ 1 , $\forall M \in \{0,1\}$: $\text{Dec}_{sk}(\text{Enc}_{pk}(M)) = M$.

Security (IND-CPA)

The distributions of $(pk, ENC_{pk}(0))$ and $(pk, ENC_{pk}(1))$ must be **computationally indistinguishable**.

A public-key encryption scheme over $\{0,1\} \times C$ consists in three algorithms:

- KEYGEN: Security parameter $\mapsto (pk, sk)$.
- ENC: $(pk, M) \mapsto C \in C$.
- DEC: $(sk, C) \mapsto M' \in \{0, 1\}.$

Correctness

With probability ≈ 1 , $\forall M \in \{0,1\}$: $\text{Dec}_{sk}(\text{Enc}_{pk}(M)) = M$.

Security (IND-CPA)

The distributions of $(pk, ENC_{pk}(0))$ and $(pk, ENC_{pk}(1))$ must be **computationally indistinguishable**.

• Parameters: n, m, q, α .

- Keys: sk = s and pk = (A, b), with b = A s + e
- ENC($M \in \{0,1\}$): Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

If it's close to 0, output 0, else output 1.

• Parameters: n, m, q, α .

• Keys: sk = s and pk = (A, b), with b = A s + e

• ENC($M \in \{0,1\}$): Let $\mathbf{r} \leftarrow U(\{0,1\}^m)$,

If it's close to 0, output 0, else output 1.

Correctn<u>ess</u>

Assume that $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$. Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$v - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor M \mod q.$$

As $\mathbf{e} \sim D^m_{\mathbb{Z}, lpha q}$, we expect $\langle \mathbf{r}, \mathbf{e}
angle$ to behave like $D_{\|\mathbf{r}\| lpha q}$.

As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\| \alpha q \leq o(\frac{q}{\sqrt{\log n}})$, and a sample from $D_{\|\mathbf{r}\| \alpha q}$ is < q/8 with probability $\geq 1 - n^{-\omega(1)}$.

Correctness

Assume that $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$. Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$\mathbf{v} - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor M \mod q.$$

As $\mathbf{e} \sim D^m_{\mathbb{Z}, \alpha q}$, we expect $\langle \mathbf{r}, \mathbf{e} \rangle$ to behave like $D_{\|\mathbf{r}\| \alpha q}$.

As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\| \alpha q \leq o(\frac{q}{\sqrt{\log n}})$, and a sample from $D_{\|\mathbf{r}\| \alpha q}$ is < q/8 with probability $\geq 1 - n^{-\omega(1)}$.

Correctness

Assume that $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$. Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$\mathbf{v} - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor M \mod q.$$

As $\mathbf{e} \sim D_{\mathbb{Z},\alpha q}^m$, we expect $\langle \mathbf{r}, \mathbf{e} \rangle$ to behave like $D_{\|\mathbf{r}\|\alpha q}$. As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\|\alpha q \leq o(\frac{q}{\sqrt{\log n}})$, and a sample from $D_{\|\mathbf{r}\|\alpha q}$ is < q/8 with probability $\geq 1 - n^{-\omega(1)}$. \Rightarrow We know $\mathbf{r}^{\mathsf{T}} \mathbf{e} + \lfloor q/2 \rfloor M$ over the integers.

Damien Stehlé

Correctness

Assume that $\alpha \leq o(\frac{1}{\sqrt{m \log n}})$. Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$\mathbf{v} - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor M \mod q.$$

As $\mathbf{e} \sim D_{\mathbb{Z},\alpha q}^m$, we expect $\langle \mathbf{r}, \mathbf{e} \rangle$ to behave like $D_{\|\mathbf{r}\| \alpha q}$. As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\| \alpha q \leq o(\frac{q}{\sqrt{\log n}})$, and a sample from $D_{\|\mathbf{r}\| \alpha q}$ is < q/8 with probability $\geq 1 - n^{-\omega(1)}$. \Rightarrow We know $\mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor M$ over the integers.

Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{*n*,*q*, α}.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$).

- If attacker behaves differently than in real security experiment, it can be used to solve LWE.
- In fake experiment, (A, b, r⁺A, r⁺b) is ≈ uniform, hence BNC(0) and BNC(1) follow (≈) the same distribution.

IND-CPA Security

Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{*n,q,\alpha*}.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$).

IND-CPA Security

Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{*n,q,\alpha*}.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$).

If attacker behaves differently than in real security experiment, it can be used to solve LWE.
Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{*n,q,\alpha*}.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$).

- If attacker behaves differently than in real security experiment, it can be used to solve LWE.
- 2 In fake experiment, $(\mathbf{A}, \mathbf{b}, \mathbf{r}^T \mathbf{A}, \mathbf{r}^T \mathbf{b})$ is \approx uniform, hence ENC(0) and ENC(1) follow (\approx) the same distribution.

Setting the parameters: n, m, α, q

• Correctness:
$$\alpha \leq o(\frac{1}{\sqrt{m \log n}})$$

• Reducing LWE to IND-CPA security: $m \geq \Omega(n \log q)$

If α as large as possible (α impacts security)

- Set m as small as possible (m impacts efficiency)
- ③ Set *n* and *q* so that $LWE_{n,q,\alpha}$ is sufficiently hard to solve

Here: $\alpha = \widetilde{\Theta}(\sqrt{n})$, $m = \widetilde{\Theta}(n)$ and $q = \widetilde{\Theta}(n)$.

This is not very practical... ciphertext expansion: $\Theta(n)$.

Setting the parameters: n, m, α, q

• Correctness:
$$\alpha \leq o(\frac{1}{\sqrt{m \log n}})$$

- Reducing LWE to IND-CPA security: $m \ge \Omega(n \log q)$
- Set α as large as possible (α impacts security)
- Set m as small as possible (m impacts efficiency)
- Set *n* and *q* so that $LWE_{n,q,\alpha}$ is sufficiently hard to solve

Here:
$$\alpha = \widetilde{\Theta}(\sqrt{n})$$
, $m = \widetilde{\Theta}(n)$ and $q = \widetilde{\Theta}(n)$.

This is not very practical... ciphertext expansion: $\Theta(n)$.

Setting the parameters: n, m, α, q

• Correctness:
$$\alpha \leq o(\frac{1}{\sqrt{m \log n}})$$

- Reducing LWE to IND-CPA security: $m \ge \Omega(n \log q)$
- Set α as large as possible (α impacts security)
- Set m as small as possible (m impacts efficiency)
- Set *n* and *q* so that $LWE_{n,q,\alpha}$ is sufficiently hard to solve

Here:
$$\alpha = \widetilde{\Theta}(\sqrt{n})$$
, $m = \widetilde{\Theta}(n)$ and $q = \widetilde{\Theta}(n)$.

This is not very practical... ciphertext expansion: $\Theta(n)$.

Multi-bit Regev

• Parameters: n, m, q, α, ℓ .

• Keys: sk =
$$S \in \mathbb{Z}_q^{n \times \ell}$$
 and pk = (A, B), with
B = AS + E

• ENC(M $\in \{0,1\}^{\ell}$): Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

$$\mathbf{u}^{T} = \mathbf{A}, \ \mathbf{v}^{T} = \mathbf{B} + \lfloor q/2 \rfloor \cdot \mathbf{M}^{T}$$

• **DEC**(\mathbf{u}, \mathbf{v}): Compute $\mathbf{v}^T - \mathbf{u}^T \mathbf{S}$ (modulo q).

Asymptotic performance, for $\ell = n$

- Ciphertext expansion: Θ(1)
- Processing time: $\Theta(n)$ per message bit
- Key size: $\widetilde{\Theta}(n^2$

Damien Stehlé

Multi-bit Regev

• Parameters: n, m, q, α, ℓ .

• Keys: sk = $\mathbf{S} \in \mathbb{Z}_q^{n \times \ell}$ and pk = (A, B), with B = AS + E

• ENC(M $\in \{0,1\}^{\ell}$): Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

$$\mathbf{u}^{T} = \mathbf{A}, \ \mathbf{v}^{T} = \mathbf{B} + \lfloor q/2 \rfloor \cdot \mathbf{M}^{T}$$

• **DEC**(\mathbf{u}, \mathbf{v}): Compute $\mathbf{v}^T - \mathbf{u}^T \mathbf{S}$ (modulo q).

Asymptotic performance, for $\ell = n$

- Ciphertext expansion: $\widetilde{\Theta}(1)$
- Processing time: $\widetilde{\Theta}(n)$ per message bit

• Key size:
$$\widetilde{\Theta}(n^2)$$

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
- \Rightarrow Can be turned into FHE [Br12]
- Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
- \Rightarrow This allows ID-based encryption, and more
- May be turned into a practical scheme [Pe14]
 - Use Ring-LWE rather than LWE: more efficient
 - Ciphertext expansion can be lowered to essentially 1
 - IND-CCA security can be achieved efficiently in the ROM

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
- \Rightarrow Can be turned into FHE [Br12]
 - Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
- \Rightarrow This allows ID-based encryption, and more
- May be turned into a practical scheme [Pe14]
 - Use Ring-LWE rather than LWE: more efficient
 - Ciphertext expansion can be lowered to essentially 1
 - IND-CCA security can be achieved efficiently in the ROM

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
- \Rightarrow Can be turned into FHE [Br12]
 - Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
- \Rightarrow This allows ID-based encryption, and more
- May be turned into a practical scheme [Pe14]
 - Use Ring-LWE rather than LWE: more efficient
 - Ciphertext expansion can be lowered to essentially 1
 - IND-CCA security can be achieved efficiently in the ROM

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Euclidean lattices

Lattice $L = \sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_i \subset \mathbb{R}^n$, for some linearly indep. \mathbf{b}_i 's. Minimum $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$.

 SVP_{γ} : Given as input a basis of *L* find $\mathbf{b} \in L$ s.t. $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$.

BDD_{γ}: Given as input a basis of *L*, and a vector **t** s.t. dist(**t**, *L*) < $\frac{1}{2\gamma} \cdot \lambda(L)$, find **b** \in *L* minimizing ||**b** - **t**||.

Euclidean lattices

Lattice $L = \sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_i \subset \mathbb{R}^n$, for some linearly indep. \mathbf{b}_i 's.

$$\mathsf{Minimum}\;\lambda(L)=\mathsf{min}\;(\|\mathbf{b}\|:\mathbf{b}\in L\!\setminus\!\mathbf{0}).$$

 $\begin{aligned} \mathsf{SVP}_{\gamma}: & \text{Given as input a basis of } L, \\ \text{find } \mathbf{b} \in L \text{ s.t. } 0 < \|\mathbf{b}\| \leq \gamma \cdot \lambda(L). \end{aligned}$

BDD_{γ}: Given as input a basis of *L*, and a vector **t** s.t. dist(**t**, *L*) < $\frac{1}{2\gamma} \cdot \lambda(L)$, find **b** \in *L* minimizing $\|\mathbf{b} - \mathbf{t}\|$.

Euclidean lattices

Lattice $L = \sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_{i} \subset \mathbb{R}^{n}$, for some linearly indep. \mathbf{b}_{i} 's.

Minimum
$$\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$$

 $\begin{aligned} \mathsf{SVP}_{\gamma}: & \text{Given as input a basis of } L, \\ \text{find } \mathbf{b} \in L \text{ s.t. } 0 < \|\mathbf{b}\| \leq \gamma \cdot \lambda(L). \end{aligned}$

BDD_{γ}: Given as input a basis of *L*, and a vector **t** s.t. dist(**t**, *L*) < $\frac{1}{2\gamma} \cdot \lambda(L)$, find **b** \in *L* minimizing ||**b** - **t**||.

Best known (classical/quantum) algorithms

$$\begin{array}{l} \mathsf{SVP}_{\gamma}: \text{ Given } L, \text{ find } \mathbf{b} \in L \text{ s.t. } 0 < \|\mathbf{b}\| \leq \gamma \cdot \lambda(L). \\ \mathsf{BDD}_{\gamma}: \text{ Given } L \text{ and } \mathbf{t} \in \mathbb{R}^n \text{ s.t. } \mathsf{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L), \\ \text{ find } \mathbf{b} \in L \text{ minimizing } \|\mathbf{b} - \mathbf{t}\|. \end{array}$$

For small γ : [AgDaReSD15]

- Time $2^{n/2}$.
- In practice: up to $n \approx 120$ (with other algorithms).
- For $\gamma = n^{\Omega(1)}$: BKZ [ScEu91,HaPuSt11]
 - Time $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$.
 - In practice, we can reach $\gamma \approx 1.01^n~$ [ChNg11].

https://github.com/dstehle/fplll

Best known (classical/quantum) algorithms

$$\begin{split} & \mathsf{SVP}_{\gamma}: \text{ Given } L, \text{ find } \mathbf{b} \in L \text{ s.t. } 0 < \|\mathbf{b}\| \leq \gamma \cdot \lambda(L). \\ & \mathsf{BDD}_{\gamma}: \text{ Given } L \text{ and } \mathbf{t} \in \mathbb{R}^n \text{ s.t. } \text{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L), \\ & \text{ find } \mathbf{b} \in L \text{ minimizing } \|\mathbf{b} - \mathbf{t}\|. \end{split}$$

For small γ : [AgDaReSD15]

- Time 2^{*n*/2}.
- In practice: up to $n \approx 120$ (with other algorithms).

For $\gamma = n^{\Omega(1)}$: BKZ [ScEu91,HaPuSt11]

• Time $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$.

• In practice, we can reach $\gamma \approx 1.01^n$ [ChNg11].

https://github.com/dstehle/fplll

Best known (classical/quantum) algorithms

$$\begin{array}{l} \mathsf{SVP}_{\gamma}: \text{ Given } L, \text{ find } \mathbf{b} \in L \text{ s.t. } 0 < \|\mathbf{b}\| \leq \gamma \cdot \lambda(L). \\ \mathsf{BDD}_{\gamma}: \text{ Given } L \text{ and } \mathbf{t} \in \mathbb{R}^n \text{ s.t. } \mathsf{dist}(\mathbf{t}, L) < \frac{1}{2\gamma} \cdot \lambda(L), \\ \text{ find } \mathbf{b} \in L \text{ minimizing } \|\mathbf{b} - \mathbf{t}\|. \end{array}$$

For small γ : [AgDaReSD15]

- Time $2^{n/2}$.
- In practice: up to $n \approx 120$ (with other algorithms).

For $\gamma = n^{\Omega(1)}$: BKZ [ScEu91,HaPuSt11]

- Time $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$.
- In practice, we can reach $\gamma \approx 1.01^n$ [ChNg11].

https://github.com/dstehle/fplll

Hardness of SVP

$GapSVP_{\gamma}$

Given a basis of a lattice L and d > 0, assess whether

 $\lambda(L) < d$ or $\lambda(L) > \gamma \cdot d$.

Hardness of SVP

$GapSVP_{\gamma}$

Given a basis of a lattice L and d > 0, assess whether

 $\lambda(L) < d$ or $\lambda(L) > \gamma \cdot d$.

- NP-hard when $\gamma \leq \mathcal{O}(1)$ (random. red.) [Aj98,HaRe07]
- In NP \cap coNP when $\gamma > \sqrt{n}$ [GoGo98,AhRe04]
- when $\gamma \ge \exp\left(n \cdot \frac{\log \log n}{\log n}\right)$ In P (BKZ)

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Each LWE sample gives $\approx \log_2 \frac{1}{\alpha}$ bits of data on secret **s**.

With a few samples, \mathbf{s} is uniquely specified. How to find it?

Exhaustive search

Assume we are given A and $\mathbf{b} = \mathbf{As} + \mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha q$. We want to find \mathbf{s} .

1st variant:

- Try all the possible $\mathbf{s} \in \mathbb{Z}_q^n$.
- Test if $\mathbf{b} \mathbf{A} \cdot \mathbf{s}$ is small.
- \Rightarrow Cost $\approx q^n$.

2nd variant:

- Try all the possible *n* first error terms.
- Recover the corresponding s, by linear algebra.
- Test if **b A** · **s** is small.
- $\Rightarrow \operatorname{\mathsf{Cost}} pprox (\alpha q \sqrt{\log n})^n.$

Assume we are given A and b = As + e, for some e whose entries are $\approx \alpha q$. We want to find s.

1st variant:

- Try all the possible $\mathbf{s} \in \mathbb{Z}_q^n$.
- Test if $\mathbf{b} \mathbf{A} \cdot \mathbf{s}$ is small.
- \Rightarrow Cost $\approx q^n$.

2nd variant:

- Try all the possible *n* first error terms.
- \bullet Recover the corresponding ${\bf s},$ by linear algebra.
- Test if $\mathbf{b} \mathbf{A} \cdot \mathbf{s}$ is small.
- $\Rightarrow \operatorname{Cost} \approx (\alpha q \sqrt{\log n})^n.$

Assume we are given A and ${\bf b}={\bf A}{\bf s}+{\bf e},$ for some ${\bf e}$ whose entries are $\approx \alpha q.$ We want to find ${\bf s}.$

Let $L_{\mathsf{A}} = \{ \mathsf{x} \in \mathbb{Z}^m : \exists \mathsf{s} \in \mathbb{Z}^n, \mathsf{x} = \mathsf{A}\mathsf{s} \ [q] \} = \mathsf{A}\mathbb{Z}_q^n + q\mathbb{Z}^m.$

• L_A is a lattice of dimension m

- Whp, its minimum satisfies $\lambda(L) pprox \sqrt{m} \cdot q^{1-rac{n}{m}}$
- We have dist $(\mathbf{b}, L) = \|\mathbf{e}\| \approx \sqrt{m} \alpha q$.

LWE reduces to BDD

Assume we are given A and ${\bf b}={\bf A}{f s}+{f e},$ for some ${f e}$ whose entries are $pprox \alpha q.$ We want to find ${f s}.$

Let $L_{\mathbf{A}} = \{ \mathbf{x} \in \mathbb{Z}^m : \exists \mathbf{s} \in \mathbb{Z}^n, \mathbf{x} = \mathbf{A}\mathbf{s} \ [q] \} = \mathbf{A}\mathbb{Z}_q^n + q\mathbb{Z}^m.$

• L_A is a lattice of dimension m.

- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$
- We have dist(\mathbf{b}, L) = $\|\mathbf{e}\| \approx \sqrt{m} \alpha q$.

LWE reduces to BDD

Assume we are given A and $\mathbf{b} = \mathbf{As} + \mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha q$. We want to find \mathbf{s} .

Let $L_{\mathsf{A}} = \{ \mathsf{x} \in \mathbb{Z}^m : \exists \mathsf{s} \in \mathbb{Z}^n, \mathsf{x} = \mathsf{A}\mathsf{s} \ [q] \} = \mathsf{A}\mathbb{Z}_q^n + q\mathbb{Z}^m.$

• L_A is a lattice of dimension m.

- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have dist(\mathbf{b}, L) = $\|\mathbf{e}\| \approx \sqrt{m\alpha q}$.

LWE reduces to BDD

Assume we are given **A** and **b** = **A**s + **e**, for some **e** whose entries are $\approx \alpha q$. We want to find **s**.

Let
$$L_{\mathbf{A}} = \{ \mathbf{x} \in \mathbb{Z}^m : \exists \mathbf{s} \in \mathbb{Z}^n, \mathbf{x} = \mathbf{A}\mathbf{s} \ [q] \} = \mathbf{A}\mathbb{Z}_q^n + q\mathbb{Z}^m.$$

- L_A is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have dist(\mathbf{b}, L) = $\|\mathbf{e}\| \approx \sqrt{m} \alpha q$.

LWE reduces to BDD

LWE reduces to BDD

This is a BDD instance in dim *m* with $\gamma \approx q^{-\frac{n}{m}}/\alpha$.

Cost of BKZ:
$$\left(\frac{m}{\log \gamma}\right)^{\mathcal{O}\left(\frac{m}{\log \gamma}\right)}$$
, with $\frac{\log \gamma}{m} = \frac{1}{m} \log \frac{1}{\alpha} - \frac{n \log q}{m^2}$.
Cost is minimized for $m \approx \frac{2n \log q}{\log \frac{1}{\alpha}}$.

Cost of BKZ to solve LWE

Time:
$$\left(\frac{n\log q}{\log^2 \alpha}\right)^{\mathcal{O}\left(\frac{n\log q}{\log^2 \alpha}\right)}$$

LWE reduces to BDD

This is a BDD instance in dim *m* with $\gamma \approx q^{-\frac{n}{m}}/\alpha$.

Cost of BKZ:
$$\left(\frac{m}{\log \gamma}\right)^{\mathcal{O}\left(\frac{m}{\log \gamma}\right)}$$
, with $\frac{\log \gamma}{m} = \frac{1}{m} \log \frac{1}{\alpha} - \frac{n \log q}{m^2}$.
Cost is minimized for $m \approx \frac{2n \log q}{\log \frac{1}{\alpha}}$.

Cost of BKZ to solve LWE

Time:
$$\left(\frac{n\log q}{\log^2 \alpha}\right)^{\mathcal{O}\left(\frac{n\log q}{\log^2 \alpha}\right)}$$
.

Hardness results on LWE

Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in dim n to LWE_{n,q, α}, with $\gamma \approx n/\alpha$.

[BrLaPeReSt13]

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP**_{γ} in **dim** \sqrt{n} to LWE_{n,q,α}, with $\gamma \approx n/\alpha$.

- The two results are incomparable.
- Best achievable γ here: *n*.
- In the case of Regev's encryption, we get $\gamma pprox {\it n}^{3/2}$
- One can use BDD_γ instead (with a different γ)

Hardness results on LWE

Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from SVP_{γ} in dim n to $LWE_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

[BrLaPeReSt13]

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP**_{γ} in dim \sqrt{n} to LWE_{n,q,α}, with $\gamma \approx n/\alpha$.

- The two results are incomparable.
- Best achievable γ here: *n*.
- In the case of Regev's encryption, we get $\gamma pprox {\it n}^{3/2}$
- One can use BDD_{γ} instead (with a different γ)

Hardness results on LWE

Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from SVP_{γ} in dim n to $LWE_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

[BrLaPeReSt13]

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a **classical** polynomial-time reduction from **GapSVP**_{γ} in dim \sqrt{n} to LWE_{n,q,α}, with $\gamma \approx n/\alpha$.

- The two results are incomparable.
- Best achievable γ here: n.
- In the case of Regev's encryption, we get $\gamma \approx n^{3/2}$.
- One can use BDD_{γ} instead (with a different γ).

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Numerous variants have been showed to be at least as hard as LWE, up to polynomial factors in the noise rate α :

(Polynomial in n, $\log q$ and possibly in the number of samples m.)

- When **s** is distributed from the error distribution.
- When **s** is binary with sufficient entropy.
- When **e** is uniform in a hypercube.
- When **e** corresponds to a deterministic rounding of **As**.
- When **A** is binary (modulo *q*).
- When some extra information on **e** is provided.
- When the first component of **e** is zero.

LWE in dimension 1

1-dimensional LWE [BoVe96]

With non-negl. prob. over $s \leftarrow U(\mathbb{Z}_q)$: distinguish between

$$(a, a \cdot s + e)$$
 and (a, b) (over \mathbb{Z}_q^2),

where
$$a, b \leftrightarrow U(\mathbb{Z}_q), e \leftrightarrow D_{\mathbb{Z}, \alpha q}$$
.

Hardness of 1-dim LWE [BrLaPeReSt13]

For any n, q, n', q' with $n \log q \le n' \log q'$: there exists a polynomial-time reduction from $LWE_{n,q,\alpha}$ to $LWE_{n',q',\alpha'}$ for some $\alpha' \le \alpha \cdot (n \log q)^{O(1)}$.

 \Rightarrow LWE_{1,qⁿ} is no easier than LWE_{n,q}.

Approximate gcd

AGCD_{D,N,α} [HG01]

With non-negl. prob. over $p \leftarrow \mathcal{D}$, distinguish between

$$u$$
 and $q \cdot p + r$ (over \mathbb{Z}),

where
$$u \leftarrow U([0, N)), q \leftarrow U([0, \frac{N}{p})), r \leftarrow \lfloor D_{\alpha p} \rceil$$
.

Hardness of AD (Informal) [ChSt15]

AGCD_{\mathcal{D},N,α} is computationally equivalent to LWE_{*n,a,\alpha*}, for some \mathcal{D} of mean $\approx q^n$ and some $N \approx q^{2n}$.

LWE:

- LWE is hard for almost all instances.
- It seems exponentially hard to solve, even quantumly.
- It is a rich/expressive problem, convenient for cryptographic design.

Lattices:

- LWE hardness comes from lattice problems.
- We can design lattice-based cryptosystems without knowing lattices!

Exciting topics I did not mention

- The Small Integer Solution problem (SIS)
 ⇒ Digital signatures.
- Ideal lattices, Ring-LWE, Ring-SIS, NTRU
 ⇒ Using polynomial rings (a.k.a. structured matrices) to get more efficient constructions.
- Implementation of lattice-based primitives.

These will be addressed in Léo's talk (Friday morning), my second talk (Friday afternoon) and Tim's talk (Friday afternoon).
If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in dim n to $LWE_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from *n*-dimensional $SVP_{\gamma}/BDD_{\gamma}$ to $LWE_{n,q,\alpha}$?
- Does there exist a quantum algorithm for LWE_{*n*,*q*, α} that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{\mathcal{O}(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{\mathcal{O}(1)}$?
- Can we reduce factoring/DL to LWE?

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in dim n to $LWE_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from *n*-dimensional $SVP_{\gamma}/BDD_{\gamma}$ to $LWE_{n,q,\alpha}$?
- Does there exist a quantum algorithm for LWE_{*n*,*q*, α} that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{\mathcal{O}(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{\mathcal{O}(1)}$?
- Can we reduce factoring/DL to LWE?

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in dim n to $LWE_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from *n*-dimensional $SVP_{\gamma}/BDD_{\gamma}$ to $LWE_{n,q,\alpha}$?
- Does there exist a quantum algorithm for LWE_{*n*,*q*, α} that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{\mathcal{O}(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{\mathcal{O}(1)}$?
- Can we reduce factoring/DL to LWE?

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_{γ} in dim n to $LWE_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from *n*-dimensional $SVP_{\gamma}/BDD_{\gamma}$ to $LWE_{n,q,\alpha}$?
- Does there exist a quantum algorithm for LWE_{*n*,*q*, α} that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{\mathcal{O}(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{\mathcal{O}(1)}$?
- $\bullet\,$ Can we reduce factoring/DL to LWE?

LWE-based cryptography is based on $GapSVP_{\gamma}$ for $\gamma \ge n$. No NP-hardness here...

- Can we solve SVP $_{\gamma}$ in poly(*n*)-time for some $\gamma = n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's $(\frac{n}{\log \gamma})^{\mathcal{O}(\frac{n}{\log \gamma})}$ run-time, for some γ ?
- What are the practical limits?

LWE-based cryptography is based on $GapSVP_{\gamma}$ for $\gamma \ge n$. No NP-hardness here...

- Can we solve SVP_{γ} in poly(*n*)-time for some $\gamma = n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's (ⁿ/_{log γ})^{O(ⁿ/_{log γ})} run-time, for some γ?
- What are the practical limits?

LWE-based cryptography is based on $GapSVP_{\gamma}$ for $\gamma \ge n$. No NP-hardness here...

- Can we solve SVP_{γ} in poly(*n*)-time for some $\gamma = n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's (ⁿ/_{log γ})^{O(ⁿ/_{log γ})} run-time, for some γ?
- What are the practical limits?

LWE-based cryptography is based on $GapSVP_{\gamma}$ for $\gamma \ge n$. No NP-hardness here...

- Can we solve SVP_{γ} in poly(*n*)-time for some $\gamma = n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's (ⁿ/_{logγ})^{O(ⁿ/_{logγ})} run-time, for some γ?
- What are the practical limits?

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical? Attribute-based encryption? Homomorphic encryption?

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical? Attribute-based encryption? Homomorphic encryption?

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical? Attribute-based encryption? Homomorphic encryption?

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical? Attribute-based encryption? Homomorphic encryption?

Introduction	LWE	Encryption	Lattices	LWE hardness	Avatars of LWE	Conclusion
Bibliog	raphy	/				

- AhRe04 D. Aharonov, O. Regev: Lattice problems in NP cap coNP. J. ACM 52(5): 749-765 (2005).
 AjDw97 M. Ajtai, C. Dwork: A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. STOC 1997: 284-293.
 Aj98 M. Ajtai: The Shortest Vector Problem in L2 is NP-hard for Randomized Reductions (Extended Abstract). STOC 1998: 10-19.
- AgDaReSD15 D. Aggarwal, D. Dadush, O. Regev, N. Stephens-Davidowitz: Solving the Shortest Vector Problem in 2ⁿ Time via Discrete Gaussian Sampling. Available on ARXIV.
 - BoVe96 D. Boneh, R. Venkatesan: Hardness of Computing the Most Significant Bits of Secret Keys in Diffie-Hellman and Related Schemes. CRYPTO 1996: 129-142.
 - Br12 Z. Brakerski: Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. CRYPTO 2012: 868-886.
- rLaPeReSt13 Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. Stehlé: Classical hardness of learning with errors. STOC 2013: 575-584.
 - BrVa11 Z. Brakerski, V. Vaikuntanathan: Efficient Fully Homomorphic Encryption from (Standard) LWE. SIAM J. Comput. 43(2): 831-871 (2014).
 - ChNg11 Y. Chen, P. Nguyen: BKZ 2.0: Better Lattice Security Estimates. ASIACRYPT 2011: 1-20.
 - ChSt15 J. H. Cheon, D. Stehlé: Fully Homomophic Encryption over the Integers Revisited. EUROCRYPT 2015.

Damien Stehlé

Introduction	LWE	Encryption	Lattices	LWE hardness	Avatars of LWE	Conclusion
Bibliog	raphy	1				

- GePeVa08 C. Gentry, C. Peikert, V. Vaikuntanathan: Trapdoors for hard lattices and new cryptographic constructions. STOC 2008: 197-206.
 - GoGo98 O. Goldreich, S. Goldwasser: On the Limits of Nonapproximability of Lattice Problems. J. Comput. Syst. Sci. 60(3): 540-563 (2000).
- GoVaWe13 S. Gorbunov, V. Vaikuntanathan, H. Wee: Attribute-based encryption for circuits. STOC 2013: 545-554.
 - HaPuSt11 G. Hanrot, X. Pujol, D. Stehlé: Analyzing Blockwise Lattice Algorithms Using Dynamical Systems. CRYPTO 2011: 447-464.
 - HaRe07 I. Haviv, O. Regev: Tensor-based Hardness of the Shortest Vector Problem to within Almost Polynomial Factors. Theory of Computing 8(1): 513-531 (2012).
 - HG01 N. Howgrave-Graham: Approximate Integer Common Divisors. CaLC 2001: 51-66.
 - Pe14 C. Peikert: Lattice Cryptography for the Internet. PQCrypto 2014: 197-219.
 - Re03 O. Regev: New lattice-based cryptographic constructions. J. ACM 51(6): 899-942 (2004).
 - Re05 O. Regev: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009).
 - ScEu91 C.-P. Schnorr, M. Euchner: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program. 66: 181-199 (1994).