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What is a good problem, for a cryptographer?

Almost all of its instances must be hard to solve.

Attacks must be too expensive.

Its instances must be easy to sample.

The algorithms run by honest users should be efficient.

The problem must be (algebraically) rich/expressive.

So that interesting models of attacks can be handled,

even for advanced cryptographic functionalities.
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Damien Stehlé The LWE problem 02/06/2015 2/40



Introduction LWE Encryption Lattices LWE hardness Avatars of LWE Conclusion

What is a good problem, for a cryptographer?

Almost all of its instances must be hard to solve.

Attacks must be too expensive.

Its instances must be easy to sample.

The algorithms run by honest users should be efficient.

The problem must be (algebraically) rich/expressive.

So that interesting models of attacks can be handled,

even for advanced cryptographic functionalities.
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The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and
n unknowns modulo an integer q, with m� n.

The best known algorithms are exponential in n log q.

Sampling an instance costs O(mn log q).
Very often, m = O(n log q), so this is O((n log q)2).

Very rich/expressive:
encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic

encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.
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Goals of this talk

Introduce LWE.

Show the relationship between LWE and lattices.

Use LWE to design a public-key encryption scheme.

Give some open problems.
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Road-map

Definition of the LWE problem

Regev’s encryption scheme

Lattice problems

Hardness of LWE

Equivalent problems
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Gaussian distributions

Continuous Gaussian of parameter s:∣∣∣∣ Ds(x) ∼ 1
s

exp
(
− π x2

s2

)
∀x ∈ R
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∀x ∈ R

Discrete Gaussian of support Z and parameter s:∣∣∣∣ DZ,s(x) ∼ 1
s

exp
(
− π x2

s2

)
∀x ∈ Z

That’s not the rounding of a continuous Gaussian.

One may efficiently sample from it.

The usual tail bound holds.
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The LWE problem [Re05]

Let n ≥ 1, q ≥ 2 and α ∈ (0, 1).
For all s ∈ Zn

q, we define the distribution Dn,q,α(s):

(a, 〈a, s〉+ e) ∈ Zn
q × Zq, with a←↩ U(Zn

q) and e ←↩ DZ,αq.

Search LWE

For all s: Given arbitrarily many samples from Dn,q,α(s), find s.

(Information-theoretically, ≈ n log q
log 1/α

samples uniquely determine s.)

Decision LWE

With non-negligible probability over s←↩ U(Zn
q):

distinguish between the distributions Dn,q,α(s) and U(Zn+1
q ).

(Non-negligible: 1/(n log q)c for some constant c > 0.)
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Decision LWE
Let n ≥ 1, q ≥ 2 and α ∈ (0, 1).
For all s ∈ Zn

q , we define the distribution Dn,q,α(s):

(a, 〈a, s〉+ e), with a←↩ U(Zn
q) and e ←↩ DZ,αq .

Decision LWE

With non-negligible probability over s←↩ U(Zn
q):

distinguish between the distributions Dn,q,α(s) and U(Zn+1
q ).

We are given an oracle O that produces independent samples
from always the same distribution, which is:

either Dn,q,α(s) for a fixed s,

or U(Zn+1
q ).

We have to tell which, with probability ≥ 1
2

+ 1
(n log q)Ω(1) .
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Search LWE ≡ solving noisy linear systems

Find s1, s2, s3, s4, s5 ∈ Z23 such that:

s1 + 22s2 + 17s3 + 2s4 + s5 ≈ 16 mod 23

3s1 + 2s2 + 11s3 + 7s4 + 8s5 ≈ 17 mod 23

15s1 + 13s2 + 10s3 + s4 + 22s5 ≈ 3 mod 23

17s1 + 11s2 + s3 + 10s4 + 3s5 ≈ 8 mod 23

2s1 + s2 + 13s3 + 6s4 + 2s5 ≈ 9 mod 23

4s1 + 4s2 + s3 + 5s4 + s5 ≈ 18 mod 23

11s1 + 12s2 + 5s3 + s4 + 9s5 ≈ 7 mod 23

We can even ask for arbitrarily many noisy equations.
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Matrix version of LWE

,
find

s

A A
s

+ e

m

n

A ←↩ U(Zm×n
q ),

s ←↩ U(Zn
q),

e ←↩ DZm,αq.
αq

Discrete Gaussian error

Decision LWE:

Determine whether (A,b) is of the form above, or uniform.
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Some simple remarks

If α ≈ 0, LWE is easy to solve.

If α ≈ 1, LWE is trivially hard.

Very often, we are interested in

α ≈ 1

nc
, q ≈ nc

′
, for some constants c ′ > c > 0.

Why a discrete Gaussian noise?
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Why is LWE interesting for crypto?

LWE is just noisy linear algebra: Easy to use, expressive.

LWE seems to be a (very) hard problem.

Two particularly useful properties:

Unlimited number of samples.

Random self-reducibility over s.

If q is prime and ≤ nO(1), there are polynomial-time reductions
between the Search and Decision versions of LWE [Re05].

(We may remove these assumptions, if we allow some polynomial blow-up on α.)
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Public-key encryption

A public-key encryption scheme over {0, 1} × C consists in
three algorithms:

KeyGen: Security parameter 7→ (pk , sk).

Enc: (pk ,M) 7→ C ∈ C.

Dec: (sk ,C ) 7→ M ′ ∈ {0, 1}.

Correctness

With probability ≈ 1, ∀M ∈ {0, 1} : Decsk(Encpk(M)) = M .

Security (IND-CPA)

The distributions of (pk , Encpk(0)) and (pk ,Encpk(1))
must be computationally indistinguishable.

Damien Stehlé The LWE problem 02/06/2015 14/40



Introduction LWE Encryption Lattices LWE hardness Avatars of LWE Conclusion

Public-key encryption

A public-key encryption scheme over {0, 1} × C consists in
three algorithms:

KeyGen: Security parameter 7→ (pk , sk).

Enc: (pk ,M) 7→ C ∈ C.

Dec: (sk ,C ) 7→ M ′ ∈ {0, 1}.

Correctness

With probability ≈ 1, ∀M ∈ {0, 1} : Decsk(Encpk(M)) = M .

Security (IND-CPA)

The distributions of (pk , Encpk(0)) and (pk ,Encpk(1))
must be computationally indistinguishable.
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Regev’s encryption scheme

Parameters: n,m, q, α.

Keys: sk = s and pk = ( A , b ), with b = A s + e

ENC(M ∈ {0, 1}): Let r ←↩ U({0, 1}m),

, v =uT =

rT

A
rT

b +bq/2c .M .

DEC(u, v): Compute v − uT s (modulo q).

rT

A
s

+ e +bq/2c .M−

rT

A
s

= small + bq/2c .M

If it’s close to 0, output 0, else output 1.
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Decryption correctness

Correctness

Assume that α ≤ o( 1√
m log n

).

Then, with probability ≥ 1− n−ω(1), it correctly decrypts.

We have

v − uT s = rTe + bq/2cM mod q.

As e ∼ Dm
Z,αq, we expect 〈r, e〉 to behave like D‖r‖αq.

As ‖r‖ ≤
√
m, we have ‖r‖αq ≤ o( q√

log n
), and

a sample from D‖r‖αq is < q/8 with probability ≥ 1− n−ω(1).

⇒ We know rTe + bq/2cM over the integers.

Damien Stehlé The LWE problem 02/06/2015 16/40
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IND-CPA Security

Security

Assume that m = Ω(n log q). Then any (IND-CPA) attacker
may be turned into an algorithm for LWEn,q,α.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (A,b)
(instead of b = A · s + e).

1 If attacker behaves differently than in real security
experiment, it can be used to solve LWE.

2 In fake experiment, (A,b, rTA, rTb) is ≈ uniform, hence
Enc(0) and Enc(1) follow (≈) the same distribution.
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Setting the parameters: n,m, α, q

Correctness: α ≤ o( 1√
m log n

)

Reducing LWE to IND-CPA security: m ≥ Ω(n log q)

1 Set α as large as possible (α impacts security)

2 Set m as small as possible (m impacts efficiency)

3 Set n and q so that LWEn,q,α is sufficiently hard to solve

Here: α = Θ̃(
√
n), m = Θ̃(n) and q = Θ̃(n).

This is not very practical... ciphertext expansion: Θ̃(n).

Damien Stehlé The LWE problem 02/06/2015 18/40
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Multi-bit Regev

Parameters: n,m, q, α, `.

Keys: sk = S ∈ Zn×`
q and pk = ( A , B ), with

B = A S + E

ENC(M ∈ {0, 1}`): Let r ←↩ U({0, 1}m),

, vT =uT =

rT

A
rT

B +bq/2c .MT .

DEC(u, v): Compute vT − uTS (modulo q).

Asymptotic performance, for ` = n

Ciphertext expansion: Θ̃(1)

Processing time: Θ̃(n) per message bit

Key size: Θ̃(n2)
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More on Regev’s encryption

This scheme is homomorphic for addition: add ciphertexts

IAnd also for multiplication: tensor ciphertexts

⇒ Can be turned into FHE [Br12]

Enc and KeyGen may be swapped: dual-Regev [GePeVa08]

⇒ This allows ID-based encryption, and more

May be turned into a practical scheme [Pe14]

Use Ring-LWE rather than LWE: more efficient

Ciphertext expansion can be lowered to essentially 1

IND-CCA security can be achieved efficiently in the ROM

Damien Stehlé The LWE problem 02/06/2015 20/40
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Euclidean lattices

Lattice L =
∑n

i=1 Zbi ⊂ Rn,

for some linearly indep. bi ’s.

Minimum λ(L) = min (‖b‖ : b ∈ L\0).

SVPγ: Given as input a basis of L,
find b ∈ L s.t. 0 < ‖b‖ ≤ γ · λ(L).

BDDγ: Given as input a basis of L, and
a vector t s.t. dist(t, L) < 1

2γ
· λ(L),

find b ∈ L minimizing ‖b− t‖.

Damien Stehlé The LWE problem 02/06/2015 22/40



Introduction LWE Encryption Lattices LWE hardness Avatars of LWE Conclusion

Euclidean lattices

Lattice L =
∑n

i=1 Zbi ⊂ Rn,

for some linearly indep. bi ’s.

Minimum λ(L) = min (‖b‖ : b ∈ L\0).

SVPγ: Given as input a basis of L,
find b ∈ L s.t. 0 < ‖b‖ ≤ γ · λ(L).

BDDγ: Given as input a basis of L, and
a vector t s.t. dist(t, L) < 1

2γ
· λ(L),

find b ∈ L minimizing ‖b− t‖.
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Best known (classical/quantum) algorithms

SVPγ : Given L, find b ∈ L s.t. 0 < ‖b‖ ≤ γ · λ(L).
BDDγ : Given L and t ∈ Rn s.t. dist(t, L) < 1

2γ · λ(L),

find b ∈ L minimizing ‖b− t‖.

For small γ: [AgDaReSD15]

Time 2n/2.

In practice: up to n ≈ 120 (with other algorithms).

For γ = nΩ(1): BKZ [ScEu91,HaPuSt11]

Time ( n
log γ

)O( n
log γ

).

In practice, we can reach γ ≈ 1.01n [ChNg11].

https://github.com/dstehle/fplll

Damien Stehlé The LWE problem 02/06/2015 23/40
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Hardness of SVP

GapSVPγ

Given a basis of a lattice L and d > 0, assess whether

λ(L) ≤ d or λ(L) > γ · d .

NP-hard when γ ≤ O(1) (random. red.) [Aj98,HaRe07]

In NP∩coNP when γ ≥
√
n [GoGo98,AhRe04]

In P when γ ≥ exp
(
n · log log n

log n

)
(BKZ)
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Road-map

Definition of the LWE problem

Regev’s encryption scheme

Lattice problems

Hardness of LWE

Equivalent problems

Each LWE sample gives ≈ log2
1
α

bits of data on secret s.

With a few samples, s is uniquely specified. How to find it?
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Exhaustive search
Assume we are given A and b = As + e, for some e whose entries are ≈ αq.
We want to find s.

1st variant:

Try all the possible s ∈ Zn
q.

Test if b− A · s is small.

⇒ Cost ≈ qn.

2nd variant:

Try all the possible n first error terms.

Recover the corresponding s, by linear algebra.

Test if b− A · s is small.

⇒ Cost ≈ (αq
√

log n)n.
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Solving LWE with BKZ (1/2)
Assume we are given A and b = As + e, for some e whose entries are ≈ αq.
We want to find s.

Let LA = {x ∈ Zm : ∃s ∈ Zn, x = As [q]} = AZn
q + qZm.

LA is a lattice of dimension m.

Whp, its minimum satisfies λ(L) ≈
√
m · q1− n

m .

We have dist(b, L) = ‖e‖ ≈
√
mαq.

LWE reduces to BDD

This is a BDD instance in dim m with γ ≈ q−
n
m /α.
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Solving LWE with BKZ (2/2)

LWE reduces to BDD

This is a BDD instance in dim m with γ ≈ q−
n
m /α.

Cost of BKZ: ( m
log γ

)O( m
log γ

), with log γ
m

= 1
m

log 1
α
− n log q

m2 .

Cost is minimized for m ≈ 2n log q

log 1
α

.

Cost of BKZ to solve LWE

Time:

(
n log q

log2 α

)O(n log q

log2 α
)

.
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Hardness results on LWE

Assume that αq ≥ 2
√
n.

[Re05]

If q is prime and ≤ nO(1), then there exists a quantum polynomial-time
reduction from SVPγ in dim n to LWEn,q,α, with γ ≈ n/α.

[BrLaPeReSt13]

If q is ≤ nO(1), then there exists a classical polynomial-time reduction
from GapSVPγ in dim

√
n to LWEn,q,α, with γ ≈ n/α.

The two results are incomparable.

Best achievable γ here: n.

In the case of Regev’s encryption, we get γ ≈ n3/2.

One can use BDDγ instead (with a different γ).
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LWE variants

Numerous variants have been showed to be at least as hard as
LWE, up to polynomial factors in the noise rate α:
(Polynomial in n, log q and possibly in the number of samples m.)

When s is distributed from the error distribution.

When s is binary with sufficient entropy.

When e is uniform in a hypercube.

When e corresponds to a deterministic rounding of As.

When A is binary (modulo q).

When some extra information on e is provided.

When the first component of e is zero.
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LWE in dimension 1

1-dimensional LWE [BoVe96]

With non-negl. prob. over s ←↩ U(Zq): distinguish between

(a, a · s + e) and (a, b) (over Z2
q),

where a, b ←↩ U(Zq), e ←↩ DZ,αq.

Hardness of 1-dim LWE [BrLaPeReSt13]

For any n, q, n′, q′ with n log q ≤ n′ log q′:
there exists a polynomial-time reduction from LWEn,q,α to
LWEn′,q′,α′ for some α′ ≤ α · (n log q)O(1).

⇒ LWE1,qn is no easier than LWEn,q.
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Approximate gcd

AGCDD,N,α [HG01]

With non-negl. prob. over p ←↩ D, distinguish between

u and q · p + r (over Z),

where u ←↩ U([0,N)), q ←↩ U([0, N
p

)), r ←↩ bDαpe.

Hardness of AD (Informal) [ChSt15]

AGCDD,N,α is computationally equivalent to LWEn,q,α, for
some D of mean ≈ qn and some N ≈ q2n.
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Conclusion

LWE:

LWE is hard for almost all instances.

It seems exponentially hard to solve, even quantumly.

It is a rich/expressive problem, convenient for
cryptographic design.

Lattices:

LWE hardness comes from lattice problems.

We can design lattice-based cryptosystems without
knowing lattices!
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Exciting topics I did not mention

The Small Integer Solution problem (SIS)
⇒ Digital signatures.

Ideal lattices, Ring-LWE, Ring-SIS, NTRU
⇒ Using polynomial rings (a.k.a. structured matrices)

to get more efficient constructions.

Implementation of lattice-based primitives.

These will be addressed in Léo’s talk (Friday morning),
my second talk (Friday afternoon) and Tim’s talk (Friday
afternoon).
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Open problems: foundations

If q is prime and ≤ nO(1), then there exists a quantum polynomial-time
reduction from SVPγ in dim n to LWEn,q,α, with γ ≈ n/α.

If q is ≤ nO(1), then there exists a classical polynomial-time reduction
from GapSVPγ in dim

√
n to LWEn,q,α, with γ ≈ n/α.

Does there exist a classical reduction from n-dimensional
SVPγ/BDDγ to LWEn,q,α?

Does there exist a quantum algorithm for LWEn,q,α that
runs in time 2

√
n (when q ≤ nO(1))?

Is LWE easy for some α = 1 / nO(1)?

Can we reduce factoring/DL to LWE?
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Open problems: cryptanalysis

LWE-based cryptography is based on GapSVPγ for γ ≥ n.
No NP-hardness here...

Can we solve SVPγ in poly(n)-time for some γ = nO(1)?

And with a quantum computer?

Can we do better than BKZ’s ( n
log γ

)O( n
log γ

) run-time, for
some γ?

What are the practical limits?

http://www.latticechallenge.org
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Open problems: practice

There exist practical lattice-based signature and encryption
schemes.

Can lattice-based primitives outperform other approaches
in some contexts?

What about side-channel cryptanalysis?

Can advanced lattice-based primitives be made practical?
Attribute-based encryption? Homomorphic encryption?
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