The LWE problem from lattices to cryptography

Damien Stehlé

ENS de Lyon
Šibenik, June 2015

ENS DE LYON

What is a good problem, for a cryptographer?

Almost all of its instances must be hard to solve

Attacks must be too expensive.

What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.

Attacks must be too expensive.

Its instances must be eas

The algorithms run by honest users should be efficient

The problem must be (algebraically)
So that interesting models of attacks can be handled
even for advanced cryptographic functionalities

What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.

Attacks must be too expensive.

- Its instances must be easy to sample.

The algorithms run by honest users should be efficient.
The problem must be (algebraically)
So that interesting models of attacks can be handled
even for advanced cryptographic functionalities

What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.

Attacks must be too expensive.

- Its instances must be easy to sample.

The algorithms run by honest users should be efficient.

- The problem must be (algebraically) rich/expressive.

So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.

The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs $\mathcal{O}(m n \log q)$.

Very often, $m=\mathcal{O}(n \log q)$, so this is $\mathcal{O}\left((n \log q)^{2}\right)$.

- Very rich/expressive
encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic
encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.

The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs $\mathcal{O}(m n \log q)$.

Very often, $m=\mathcal{O}(n \log q)$, so this is $\mathcal{O}\left((n \log q)^{2}\right)$.

- Very rich/expressive:
encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.

Goals of this talk

- Introduce LWE.
- Show the relationship between LWE and lattices.
- Use LWE to design a public-key encryption scheme.
- Give some open problems.

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Gaussian distributions

Continuous Gaussian of parameter s:

$$
\begin{aligned}
& D_{s}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{x^{2}}{s^{2}}\right) \\
& \forall x \in \mathbb{R}
\end{aligned}
$$

Gaussian distributions

Continuous Gaussian of parameter s:

$$
\begin{aligned}
& D_{s}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{x^{2}}{s^{2}}\right) \\
& \forall x \in \mathbb{R}
\end{aligned}
$$

Discrete Gaussian of support \mathbb{Z} and parameter s:

$$
\begin{aligned}
& D_{\mathbb{Z}, s}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{x^{2}}{s^{2}}\right) \\
& \forall x \in \mathbb{Z}
\end{aligned}
$$

Gaussian distributions

Continuous Gaussian of parameter s:

$$
\begin{aligned}
& D_{s}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{x^{2}}{s^{2}}\right) \\
& \forall x \in \mathbb{R}
\end{aligned}
$$

Discrete Gaussian of support \mathbb{Z} and parameter s:

$$
\begin{aligned}
& D_{\mathbb{Z}, s}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{x^{2}}{s^{2}}\right) \\
& \forall x \in \mathbb{Z}
\end{aligned}
$$

- That's not the rounding of a continuous Gaussian.
- One may efficiently sample from it.
- The usual tail bound holds.

The LWE problem [Reos]

Let $n \geq 1, q \geq 2$ and $\alpha \in(0,1)$.
For all $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we define the distribution $D_{n, q, \alpha}(\mathbf{s})$:
$(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$, with $\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $e \hookleftarrow D_{\mathbb{Z}, \alpha q}$.

The LWE problem [Reos]

Let $n \geq 1, q \geq 2$ and $\alpha \in(0,1)$.
For all $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we define the distribution $D_{n, q, \alpha}(\mathbf{s})$:
$(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$, with $\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $e \hookleftarrow D_{\mathbb{Z}, \alpha q}$.

Search LWE

For all s: Given arbitrarily many samples from $D_{n, q, \alpha}(\mathbf{s})$, find \mathbf{s}.
(Information-theoretically, $\approx n \frac{\log q}{\log 1 / \alpha}$ samples uniquely determine s.)

The LWE problem [Reos]

Let $n \geq 1, q \geq 2$ and $\alpha \in(0,1)$.
For all $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we define the distribution $D_{n, q, \alpha}(\mathbf{s})$:
$(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$, with $\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $e \hookleftarrow D_{\mathbb{Z}, \alpha q}$.

Search LWE

For all \mathbf{s} : Given arbitrarily many samples from $D_{n, q, \alpha}(\mathbf{s})$, find \mathbf{s}.
(Information-theoretically, $\approx n \frac{\log q}{\log 1 / \alpha}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$: distinguish between the distributions $D_{n, q, \alpha}(\mathbf{s})$ and $U\left(\mathbb{Z}_{q}^{n+1}\right)$.
(Non-negligible: $1 /(n \log q)^{c}$ for some constant $c>0$.)

Decision LWE

Let $n \geq 1, q \geq 2$ and $\alpha \in(0,1)$.
For all $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we define the distribution $D_{n, q, \alpha}(\mathbf{s})$:

$$
(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e), \text { with } \mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right) \text { and } e \hookleftarrow D_{\mathbb{Z}, \alpha q} .
$$

Decision LWE

With non-negligible probability over $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$: distinguish between the distributions $D_{n, q, \alpha}(\mathbf{s})$ and $U\left(\mathbb{Z}_{q}^{n+1}\right)$.

We are given an oracle \mathcal{O} that produces independent samples from always the same distribution, which is:

- either $D_{n, q, \alpha}(\mathbf{s})$ for a fixed \mathbf{s},
- or $U\left(\mathbb{Z}_{q}^{n+1}\right)$.

We have to tell which, with probability $\geq \frac{1}{2}+\frac{1}{(n \log q)^{\Omega(1)}}$.

Search LWE \equiv solving noisy linear systems

Find $s_{1}, s_{2}, s_{3}, s_{4}, s_{5} \in \mathbb{Z}_{23}$ such that:

$$
\begin{aligned}
s_{1}+22 s_{2}+17 s_{3}+2 s_{4}+s_{5} & \approx 16 \bmod 23 \\
3 s_{1}+2 s_{2}+11 s_{3}+7 s_{4}+8 s_{5} & \approx 17 \bmod 23 \\
15 s_{1}+13 s_{2}+10 s_{3}+s_{4}+22 s_{5} & \approx 3 \bmod 23 \\
17 s_{1}+11 s_{2}+s_{3}+10 s_{4}+3 s_{5} & \approx 8 \bmod 23 \\
2 s_{1}+s_{2}+13 s_{3}+6 s_{4}+2 s_{5} & \approx 9 \bmod 23 \\
4 s_{1}+4 s_{2}+s_{3}+5 s_{4}+s_{5} & \approx \\
11 s_{1}+12 s_{2}+5 s_{3}+s_{4}+9 s_{5} & \approx
\end{aligned}
$$

We can even ask for arbitrarily many noisy equations.

Matrix version of LWE

- $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$,
- $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$,
- $\mathbf{e} \hookleftarrow D_{\mathbb{Z}^{m}, \alpha q}$.

Discrete Gaussian error

Decision LWE:
Determine whether (\mathbf{A}, \mathbf{b}) is of the form above, or uniform.

Some simple remarks

- If $\alpha \approx 0$, LWE is easy to solve.
- If $\alpha \approx 1$, LWE is trivially hard.
- Very often, we are interested in

$$
\alpha \approx \frac{1}{n^{c}}, q \approx n^{c^{\prime}}, \text { for some constants } c^{\prime}>c>0
$$

- Why a discrete Gaussian noise?

Why is LWE interesting for crypto?

- LWE is just noisy linear algebra: Easy to use, expressive.
- LWE seems to be a (very) hard problem.

Why is LWE interesting for crypto?

- LWE is just noisy linear algebra: Easy to use, expressive.
- LWE seems to be a (very) hard problem.

Two particularly useful properties:

- Unlimited number of samples.
- Random self-reducibility over s.

If q is prime and $\leq n^{\mathcal{O}(1)}$, there are polynomial-time reductions between the Search and Decision versions of LWE [Re05].
(We may remove these assumptions, if we allow some polynomial blow-up on α.)

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Public-key encryption

A public-key encryption scheme over $\{0,1\} \times \mathcal{C}$ consists in three algorithms:

- KEyGEN: Security parameter $\mapsto(p k, s k)$.
- Enc: $\quad(p k, M) \mapsto C \in \mathcal{C}$.
- DEC: $\quad(s k, C) \mapsto M^{\prime} \in\{0,1\}$.

Public-key encryption

A public-key encryption scheme over $\{0,1\} \times \mathcal{C}$ consists in three algorithms:

- KEyGEN: Security parameter $\mapsto(p k, s k)$.
- Enc: $\quad(p k, M) \mapsto C \in \mathcal{C}$.
- DEC: $\quad(s k, C) \mapsto M^{\prime} \in\{0,1\}$.

Correctness

With probability $\approx 1, \forall M \in\{0,1\}: \operatorname{DEC}_{s k}\left(\operatorname{Enc}_{p k}(M)\right)=M$.

Public-key encryption

A public-key encryption scheme over $\{0,1\} \times \mathcal{C}$ consists in three algorithms:

- KEyGEN: Security parameter $\mapsto(p k, s k)$.
- Enc: $\quad(p k, M) \mapsto C \in \mathcal{C}$.
- DEC: $\quad(s k, C) \mapsto M^{\prime} \in\{0,1\}$.

Correctness

With probability $\approx 1, \forall M \in\{0,1\}: \operatorname{DEC}_{s k}\left(\operatorname{Enc}_{p k}(M)\right)=M$.

Security (IND-CPA)

The distributions of $\left(p k, \operatorname{Enc}_{p k}(0)\right)$ and ($p k, \operatorname{Enc}_{p k}(1)$) must be computationally indistinguishable.

Regev's encryption scheme

- Parameters: n, m, q, α.
- Keys: $\mathrm{sk}=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$, with $\mathbf{b}=\mathbf{A} \mathbf{s}+\mathrm{e}$
- $\operatorname{ENC}(M \in\{0,1\})$: Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

Regev's encryption scheme

- Parameters: n, m, q, α.
- Keys: $\mathrm{sk}=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$, with $\mathbf{b}=\mathbf{A} \mathbf{s}+\mathrm{e}$
- $\operatorname{ENC}(M \in\{0,1\})$: Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

- $\operatorname{DEC}(\mathbf{u}, v):$ Compute $v-\mathbf{u}^{T} \mathbf{s}$ (modulo $\left.q\right)$.

If it's close to 0 , output 0 , else output 1 .

Decryption correctness

Correctness

Assume that $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$.
Then, with probability $\geq 1-n^{-\omega(1)}$, it correctly decrypts.

Decryption correctness

Correctness

Assume that $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$.
Then, with probability $\geq 1-n^{-\omega(1)}$, it correctly decrypts.
We have

$$
v-\mathbf{u}^{T} \mathbf{s}=\mathbf{r}^{T} \mathbf{e}+\lfloor q / 2\rfloor M \bmod q .
$$

As $\mathbf{e} \sim D_{\mathbb{Z}, \alpha q}^{m}$, we expect $\langle\mathbf{r}, \mathbf{e}\rangle$ to behave like $D_{\|r\| \alpha q}$.

Decryption correctness

Correctness

Assume that $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$.
Then, with probability $\geq 1-n^{-\omega(1)}$, it correctly decrypts.
We have

$$
v-\mathbf{u}^{T} \mathbf{s}=\mathbf{r}^{T} \mathbf{e}+\lfloor q / 2\rfloor M \bmod q .
$$

As $\mathbf{e} \sim D_{\mathbb{Z}, \alpha q}^{m}$, we expect $\langle\mathbf{r}, \mathbf{e}\rangle$ to behave like $D_{\|r\| \alpha q}$.
As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\| \alpha q \leq o\left(\frac{q}{\sqrt{\log n}}\right)$, and
a sample from $D_{\|r\| \alpha q}$ is $<q / 8$ with probability $\geq 1-n^{-\omega(1)}$.

Decryption correctness

Correctness

Assume that $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$.
Then, with probability $\geq 1-n^{-\omega(1)}$, it correctly decrypts.
We have

$$
v-\mathbf{u}^{T} \mathbf{s}=\mathbf{r}^{T} \mathbf{e}+\lfloor q / 2\rfloor M \quad \bmod q
$$

As $\mathbf{e} \sim D_{\mathbb{Z}, \alpha q}^{m}$, we expect $\langle\mathbf{r}, \mathbf{e}\rangle$ to behave like $D_{\|r\| \alpha q}$.
As $\|\mathbf{r}\| \leq \sqrt{m}$, we have $\|\mathbf{r}\| \alpha q \leq o\left(\frac{q}{\sqrt{\log n}}\right)$, and
a sample from $D_{\|r\| \alpha q}$ is $<q / 8$ with probability $\geq 1-n^{-\omega(1)}$.
\Rightarrow We know $\mathbf{r}^{T} \mathbf{e}+\lfloor q / 2\rfloor M$ over the integers.

IND-CPA Security

Security

Assume that $m=\Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for $\mathrm{LWE}_{n, q, \alpha}$.

IND-CPA Security

Security

Assume that $m=\Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for $\mathrm{LWE}_{n, q, \alpha}$.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b}=\mathbf{A} \cdot \mathbf{s}+\mathbf{e}$).

IND-CPA Security

Security

Assume that $m=\Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for $\mathrm{LWE}_{n, q, \alpha}$.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (\mathbf{A}, \mathbf{b}) (instead of $\mathbf{b}=\mathbf{A} \cdot \mathbf{s}+\mathbf{e}$).
(1) If attacker behaves differently than in real security experiment, it can be used to solve LWE.

IND-CPA Security

Security

Assume that $m=\Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for $\mathrm{LWE}_{n, q, \alpha}$.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (A, b) (instead of $\mathbf{b}=\mathbf{A} \cdot \mathbf{s}+\mathbf{e}$).
(1) If attacker behaves differently than in real security experiment, it can be used to solve LWE.
(2) In fake experiment, $\left(\mathbf{A}, \mathbf{b}, \mathbf{r}^{\top} \mathbf{A}, \mathbf{r}^{\top} \mathbf{b}\right)$ is \approx uniform, hence $\operatorname{Enc}(0)$ and $\operatorname{Enc}(1)$ follow (\approx) the same distribution.

Setting the parameters: n, m, α, q

- Correctness: $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$
- Reducing LWE to IND-CPA security: $m \geq \Omega(n \log q)$

Setting the parameters: n, m, α, q

- Correctness: $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$
- Reducing LWE to IND-CPA security: $m \geq \Omega(n \log q)$
(1) Set α as large as possible (α impacts security)
(2) Set m as small as possible (m impacts efficiency)
(0) Set n and q so that $\mathrm{LWE}_{n, q, \alpha}$ is sufficiently hard to solve

Here: $\alpha=\widetilde{\Theta}(\sqrt{n}), m=\widetilde{\Theta}(n)$ and $q=\widetilde{\Theta}(n)$.

Setting the parameters: n, m, α, q

- Correctness: $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$
- Reducing LWE to IND-CPA security: $m \geq \Omega(n \log q)$
(1) Set α as large as possible (α impacts security)
(2) Set m as small as possible (m impacts efficiency)
- Set n and q so that $\mathrm{LWE}_{n, q, \alpha}$ is sufficiently hard to solve

Here: $\alpha=\widetilde{\Theta}(\sqrt{n}), m=\widetilde{\Theta}(n)$ and $q=\widetilde{\Theta}(n)$.
This is not very practical... ciphertext expansion: $\widetilde{\Theta}(n)$.

Multi-bit Regev

- Parameters: n, m, q, α, ℓ.
- Keys: $s k=\mathbf{S} \in \mathbb{Z}_{q}^{n \times \ell}$ and $p k=(\mathbf{A}, \mathbf{B})$, with

$$
\mathbf{B}=\mathbf{A} \mathbf{S}+\mathbf{E}
$$

- $\operatorname{ENC}\left(\mathbf{M} \in\{0,1\}^{\ell}\right)$: Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

- $\operatorname{DEC}(\mathbf{u}, \mathbf{v})$: Compute $\mathbf{v}^{T}-\mathbf{u}^{\top} \mathbf{S}$ (modulo q).

Multi-bit Regev

- Parameters: n, m, q, α, ℓ.
- Keys: $\mathrm{sk}=\mathbf{S} \in \mathbb{Z}_{q}^{n \times \ell}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{B})$, with

$$
\mathbf{B}=\mathbf{A} \mathbf{S}+\mathbf{E}
$$

- $\operatorname{ENC}\left(\mathbf{M} \in\{0,1\}^{\ell}\right)$: Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

- $\operatorname{DEC}(\mathbf{u}, \mathbf{v})$: Compute $\mathbf{v}^{T}-\mathbf{u}^{T} \mathbf{S}$ (modulo q).

Asymptotic performance, for $\ell=n$

- Ciphertext expansion: $\widetilde{\Theta}(1)$
- Processing time: $\widetilde{\Theta}(n)$ per message bit
- Key size: $\widetilde{\Theta}\left(n^{2}\right)$

More on Regev's encryption

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
\Rightarrow Can be turned into FHE [Br12]

More on Regev's encryption

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
\Rightarrow Can be turned into FHE [Br12]
- Enc and KeyGen may be swapped: dual-Regev [GePeVa08] \Rightarrow This allows ID-based encryption, and more
\qquad

More on Regev's encryption

- This scheme is homomorphic for addition: add ciphertexts
- IAnd also for multiplication: tensor ciphertexts
\Rightarrow Can be turned into FHE [Br12]
- Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
\Rightarrow This allows ID-based encryption, and more
May be turned into a practical scheme [Pe14]
- Use Ring-LWE rather than LWE: more efficient
- Ciphertext expansion can be lowered to essentially 1
- IND-CCA security can be achieved efficiently in the ROM

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Euclidean lattices

Lattice $L=\sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_{i} \subset \mathbb{R}^{n}$, for some linearly indep. \mathbf{b}_{i} 's.

Minimum $\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.

find $\mathbf{b} \in L$ minimizing $\|\mathbf{b}-\mathbf{t}\|$

Euclidean lattices

Lattice $L=\sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_{i} \subset \mathbb{R}^{n}$,
for some linearly indep. \mathbf{b}_{i} 's.
Minimum $\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.

SVP ${ }_{\gamma}$: Given as input a basis of L, find $\mathbf{b} \in L$ s.t. $0<\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.
 a vector \mathbf{t} s.t. $\operatorname{dist}(\mathbf{t}, L)$ find $\mathbf{b} \in L$ minimizing $\| \mathbf{b}-\mathrm{t}$

Euclidean lattices

Lattice $L=\sum_{i=1}^{n} \mathbb{Z} \mathbf{b}_{i} \subset \mathbb{R}^{n}$,
for some linearly indep. \mathbf{b}_{i} 's.
Minimum $\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.

SVP $_{\gamma}$: Given as input a basis of L, find $\mathbf{b} \in L$ s.t. $0<\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.
BDD_{γ} : Given as input a basis of L, and a vector \mathbf{t} s.t. $\operatorname{dist}(\mathbf{t}, L)<\frac{1}{2 \gamma} \cdot \lambda(L)$, find $\mathbf{b} \in L$ minimizing $\|\mathbf{b}-\mathbf{t}\|$.

Best known (classical/quantum) algorithms

SVP $_{\gamma}$: Given L, find $\mathbf{b} \in L$ s.t. $0<\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$. BDD_{γ} : Given L and $\mathbf{t} \in \mathbb{R}^{n}$ s.t. $\operatorname{dist}(\mathbf{t}, L)<\frac{1}{2 \gamma} \cdot \lambda(L)$, find $\mathbf{b} \in L$ minimizing $\|\mathbf{b}-\mathbf{t}\|$.

For small γ : [AgDaReSD15]

Best known (classical/quantum) algorithms

SVP $_{\gamma}$: Given L, find $\mathbf{b} \in L$ s.t. $0<\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$. BDD_{γ} : Given L and $\mathbf{t} \in \mathbb{R}^{n}$ s.t. $\operatorname{dist}(\mathbf{t}, L)<\frac{1}{2 \gamma} \cdot \lambda(L)$, find $\mathbf{b} \in L$ minimizing $\|\mathbf{b}-\mathbf{t}\|$.

For small γ : [AgDaReSD15]

- Time $2^{n / 2}$.
- In practice: up to $n \approx 120$ (with other algorithms).

Best known (classial/quantum) algorithms

SVP $_{\gamma}$: Given L, find $\mathbf{b} \in L$ s.t. $0<\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.
BDD_{γ} : Given L and $\mathbf{t} \in \mathbb{R}^{n}$ s.t. $\operatorname{dist}(\mathbf{t}, L)<\frac{1}{2 \gamma} \cdot \lambda(L)$, find $\mathbf{b} \in L$ minimizing $\|\mathbf{b}-\mathbf{t}\|$.

For small γ : [AgDaReSD15]

- Time $2^{n / 2}$.
- In practice: up to $n \approx 120$ (with other algorithms).

For $\gamma=n^{\Omega(1)}: \quad$ BKZ [ScEu91,HaPuSt11]

- Time $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$.
- In practice, we can reach $\gamma \approx 1.01^{n}$ [ChNg11].
https://github.com/dstehle/fplll

Hardness of SVP

GapSVP $_{\gamma}$

Given a basis of a lattice L and $d>0$, assess whether

$$
\lambda(L) \leq d \quad \text { or } \quad \lambda(L)>\gamma \cdot d .
$$

Hardness of SVP

GapSVP ${ }_{\gamma}$

Given a basis of a lattice L and $d>0$, assess whether

$$
\lambda(L) \leq d \quad \text { or } \quad \lambda(L)>\gamma \cdot d .
$$

- NP-hard
when $\gamma \leq \mathcal{O}(1) \quad$ (random. red.) \quad [Aj98,HaRe07]
- In NP \cap coNP when $\gamma \geq \sqrt{n}$
- In \mathbf{P}
[GoGo98,AhRe04]

$$
\begin{align*}
& \text { when } \gamma \geq \sqrt{n} \tag{BKZ}\\
& \text { when } \gamma \geq \exp \left(n \cdot \frac{\log \log n}{\log n}\right)
\end{align*}
$$

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

Each LWE sample gives $\approx \log _{2} \frac{1}{\alpha}$ bits of data on secret \mathbf{s}.
With a few samples, \mathbf{s} is uniquely specified. How to find it?

Exhaustive search

Assume we are given \mathbf{A} and $\mathbf{b}=\mathbf{A s}+\mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha \boldsymbol{q}$. We want to find s.

1st variant:

- Try all the possible $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.
- Test if $\mathbf{b}-\mathbf{A} \cdot \mathbf{s}$ is small.
\Rightarrow Cost $\approx q^{n}$.

2nd variant:

Exhaustive search

Assume we are given \mathbf{A} and $\mathbf{b}=\mathbf{A s}+\mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha \boldsymbol{q}$. We want to find s.

1st variant:

- Try all the possible $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.
- Test if $\mathbf{b}-\mathbf{A} \cdot \mathbf{s}$ is small.
\Rightarrow Cost $\approx q^{n}$.

2nd variant:

- Try all the possible n first error terms.
- Recover the corresponding s, by linear algebra.
- Test if $\mathbf{b}-\mathbf{A} \cdot \mathbf{s}$ is small.
\Rightarrow Cost $\approx(\alpha q \sqrt{\log n})^{n}$.

Solving LWE with BKZ (1/2)

Assume we are given \mathbf{A} and $\mathbf{b}=\mathbf{A s}+\mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha \boldsymbol{q}$. We want to find s.

Let $L_{\mathbf{A}}=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \exists \mathbf{s} \in \mathbb{Z}^{n}, \mathbf{x}=\mathbf{A s}[q]\right\}=\mathbf{A} \mathbb{Z}_{q}^{n}+q \mathbb{Z}^{m}$.

Solving LWE with BKZ (1/2)

Assume we are given \mathbf{A} and $\mathbf{b}=\mathbf{A s}+\mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha \boldsymbol{q}$. We want to find s.

Let $L_{\mathbf{A}}=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \exists \mathbf{s} \in \mathbb{Z}^{n}, \mathbf{x}=\mathbf{A s}[q]\right\}=\mathbf{A} \mathbb{Z}_{q}^{n}+q \mathbb{Z}^{m}$.

- L_{A} is a lattice of dimension m.

This is a BDD instance in $\operatorname{dim} m$ with

Solving LWE with BKZ (1/2)

Assume we are given \mathbf{A} and $\mathbf{b}=\mathbf{A s}+\mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha \boldsymbol{q}$. We want to find s.

Let $L_{\mathbf{A}}=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \exists \mathbf{s} \in \mathbb{Z}^{n}, \mathbf{x}=\mathbf{A s}[q]\right\}=\mathbf{A} \mathbb{Z}_{q}^{n}+q \mathbb{Z}^{m}$.

- L_{A} is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.

Solving LWE with BKZ (1/2)

Assume we are given \mathbf{A} and $\mathbf{b}=\mathbf{A s}+\mathbf{e}$, for some \mathbf{e} whose entries are $\approx \alpha \boldsymbol{q}$. We want to find s.

Let $L_{\mathbf{A}}=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \exists \mathbf{s} \in \mathbb{Z}^{n}, \mathbf{x}=\mathbf{A s}[q]\right\}=\mathbf{A} \mathbb{Z}_{q}^{n}+q \mathbb{Z}^{m}$.

- L_{A} is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have $\operatorname{dist}(\mathbf{b}, L)=\|\mathbf{e}\| \approx \sqrt{m} \alpha q$.

LWE reduces to BDD

This is a BDD instance in $\operatorname{dim} m$ with $\gamma \approx q^{-\frac{n}{m}} / \alpha$.

Solving LWE with BKZ (2/2)

LWE reduces to BDD

This is a BDD instance in $\operatorname{dim} m$ with $\gamma \approx q^{-\frac{n}{m}} / \alpha$.
Cost of BKZ: $\left(\frac{m}{\log \gamma}\right)^{\mathcal{O}\left(\frac{m}{\log \gamma}\right)}$, with $\frac{\log \gamma}{m}=\frac{1}{m} \log \frac{1}{\alpha}-\frac{n \log q}{m^{2}}$.
Cost is minimized for $m \approx \frac{2 n \log q}{\log \frac{1}{\alpha}}$.

Solving LWE with BKZ (2/2)

LWE reduces to BDD

This is a BDD instance in $\operatorname{dim} m$ with $\gamma \approx q^{-\frac{n}{m}} / \alpha$.
Cost of BKZ: $\left(\frac{m}{\log \gamma}\right)^{\mathcal{O}\left(\frac{m}{\log \gamma}\right)}$, with $\frac{\log \gamma}{m}=\frac{1}{m} \log \frac{1}{\alpha}-\frac{n \log q}{m^{2}}$.
Cost is minimized for $m \approx \frac{2 n \log q}{\log \frac{1}{\alpha}}$.

Cost of BKZ to solve LWE

$$
\text { Time: }\left(\frac{n \log q}{\log ^{2} \alpha}\right)^{\mathcal{O}\left(\frac{n \log q}{\log ^{2} \alpha}\right)}
$$

Hardness results on LWE

Assume that $\alpha q \geq 2 \sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from $\operatorname{SVP}_{\gamma}$ in $\operatorname{dim} n$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

Hardness results on LWE

Assume that $\alpha q \geq 2 \sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from SVP_{γ} in $\operatorname{dim} n$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

[BrLaPeReSt13]

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a classical polynomial-time reduction from GapSVP ${ }_{\gamma}$ in $\operatorname{dim} \sqrt{n}$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

- The two results are incomparable.
- Best achievable γ here: n
- In the case of Regev's encryption, we get
- One can use BDD instead (with a different γ).

Hardness results on LWE

Assume that $\alpha q \geq 2 \sqrt{n}$.

[Re05]

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from SVP_{γ} in $\operatorname{dim} n$ to $\mathrm{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

[BrLaPeReSt13]

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a classical polynomial-time reduction from GapSVP ${ }_{\gamma}$ in $\operatorname{dim} \sqrt{n}$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

- The two results are incomparable.
- Best achievable γ here: n.
- In the case of Regev's encryption, we get $\gamma \approx n^{3 / 2}$.
- One can use BDD $_{\gamma}$ instead (with a different γ).

Road-map

- Definition of the LWE problem
- Regev's encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems

LWE variants

Numerous variants have been showed to be at least as hard as LWE, up to polynomial factors in the noise rate α :
(Polynomial in $n, \log q$ and possibly in the number of samples m.)

- When \mathbf{s} is distributed from the error distribution.
- When \mathbf{s} is binary with sufficient entropy.
- When \mathbf{e} is uniform in a hypercube.
- When e corresponds to a deterministic rounding of As.
- When \mathbf{A} is binary (modulo q).
- When some extra information on \mathbf{e} is provided.
- When the first component of \mathbf{e} is zero.

LWE in dimension 1

1-dimensional LWE [BoVe96]

With non-negl. prob. over $s \hookleftarrow U\left(\mathbb{Z}_{q}\right)$: distinguish between

$$
(a, a \cdot s+e) \text { and }(a, b) \quad\left(\text { over } \mathbb{Z}_{q}^{2}\right),
$$

where $a, b \hookleftarrow U\left(\mathbb{Z}_{q}\right), e \hookleftarrow D_{\mathbb{Z}, \alpha q}$.

Hardness of 1-dim LWE [BrLaPeReSt13]

For any $n, q, n^{\prime}, q^{\prime}$ with $n \log q \leq n^{\prime} \log q^{\prime}$:
there exists a polynomial-time reduction from $\mathrm{LWE}_{n, q, \alpha}$ to $\mathrm{LWE}_{n^{\prime}, q^{\prime}, \alpha^{\prime}}$ for some $\alpha^{\prime} \leq \alpha \cdot(n \log q)^{O(1)}$.
$\Rightarrow \mathrm{LWE}_{1, q^{n}}$ is no easier than $\mathrm{LWE}_{n, q}$.

Approximate gcd

$\mathrm{AGCD}_{\mathcal{D}, N, \alpha} \quad$ [HGO1]

With non-negl. prob. over $p \hookleftarrow \mathcal{D}$, distinguish between

$$
u \text { and } q \cdot p+r \quad(\text { over } \mathbb{Z})
$$

where $u \hookleftarrow U([0, N)), q \hookleftarrow U\left(\left[0, \frac{N}{p}\right)\right), r \hookleftarrow\left\lfloor D_{\alpha p}\right\rceil$.

Hardness of AD (Informal) [ChSt15]

$\mathrm{AGCD}_{\mathcal{D}, N, \alpha}$ is computationally equivalent to $\mathrm{LWE}_{n, q, \alpha}$, for some \mathcal{D} of mean $\approx q^{n}$ and some $N \approx q^{2 n}$.

Conclusion

LWE:

- LWE is hard for almost all instances.
- It seems exponentially hard to solve, even quantumly.
- It is a rich/expressive problem, convenient for cryptographic design.

Lattices:

- LWE hardness comes from lattice problems.
- We can design lattice-based cryptosystems without knowing lattices!

Exciting topics I did not mention

- The Small Integer Solution problem (SIS)
\Rightarrow Digital signatures.
- Ideal lattices, Ring-LWE, Ring-SIS, NTRU
\Rightarrow Using polynomial rings (a.k.a. structured matrices) to get more efficient constructions.
- Implementation of lattice-based primitives.

These will be addressed in Léo's talk (Friday morning), my second talk (Friday afternoon) and Tim's talk (Friday afternoon).

Open problems: foundations

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from $\operatorname{SVP}_{\gamma}$ in $\operatorname{dim} n$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a classical polynomial-time reduction from GapSVP ${ }_{\gamma}$ in $\operatorname{dim} \sqrt{n}$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

- Does there exist a classical reduction from n-dimensional $\mathrm{SVP}_{\gamma} / \mathrm{BDD}_{\gamma}$ to $\mathrm{LWE}_{n, q, \alpha}$?
Does there exist a quantum algorithm for LWE ${ }_{n . q . \alpha}$ that runs in time $2^{\sqrt{n}}$ (when $\left.q \leq n^{\mathcal{O}(1)}\right)$?
- Is MN/E nasy for somen $-1 / n \mathcal{O}(1)$?

Open problems: foundations

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from $\operatorname{SVP}_{\gamma}$ in $\operatorname{dim} n$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a classical polynomial-time reduction from GapSVP ${ }_{\gamma}$ in $\operatorname{dim} \sqrt{n}$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

- Does there exist a classical reduction from n-dimensional $\mathrm{SVP}_{\gamma} / \mathrm{BDD}_{\gamma}$ to $\mathrm{LWE}_{n, q, \alpha}$?
- Does there exist a quantum algorithm for $\operatorname{LWE}_{n, q, \alpha}$ that runs in time $2^{\sqrt{n}}$ (when $\left.q \leq n^{\mathcal{O}(1)}\right)$?

Open problems: foundations

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from $\operatorname{SVP}_{\gamma}$ in $\operatorname{dim} n$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a classical polynomial-time reduction from GapSVP ${ }_{\gamma}$ in $\operatorname{dim} \sqrt{n}$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

- Does there exist a classical reduction from n-dimensional $\mathrm{SVP}_{\gamma} / \mathrm{BDD}_{\gamma}$ to $\mathrm{LWE}_{n, q, \alpha}$?
- Does there exist a quantum algorithm for $\operatorname{LWE}_{n, q, \alpha}$ that runs in time $2^{\sqrt{n}}$ (when $\left.q \leq n^{\mathcal{O}(1)}\right)$?
- Is LWE easy for some $\alpha=1 / n^{\mathcal{O}(1)}$?

Open problems: foundations

If q is prime and $\leq n^{\mathcal{O}(1)}$, then there exists a quantum polynomial-time reduction from $\operatorname{SVP}_{\gamma}$ in $\operatorname{dim} n$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

If q is $\leq n^{\mathcal{O}(1)}$, then there exists a classical polynomial-time reduction from GapSVP ${ }_{\gamma}$ in $\operatorname{dim} \sqrt{n}$ to $\operatorname{LWE}_{n, q, \alpha}$, with $\gamma \approx n / \alpha$.

- Does there exist a classical reduction from n-dimensional $\mathrm{SVP}_{\gamma} / \mathrm{BDD}_{\gamma}$ to $\mathrm{LWE}_{n, q, \alpha}$?
- Does there exist a quantum algorithm for $\operatorname{LWE}_{n, q, \alpha}$ that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{\mathcal{O}(1)}$)?
- Is LWE easy for some $\alpha=1 / n^{\mathcal{O}(1)}$?
- Can we reduce factoring/DL to LWE?

Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP ${ }_{\gamma}$ for $\gamma \geq n$. No NP-hardness here...

Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP ${ }_{\gamma}$ for $\gamma \geq n$. No NP-hardness here...

- Can we solve $\operatorname{SVP}_{\gamma}$ in poly (n)-time for some $\gamma=n^{\mathcal{O}(1)}$?
- And with a quantum computer?
some

Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP ${ }_{\gamma}$ for $\gamma \geq n$. No NP-hardness here...

- Can we solve $\operatorname{SVP}_{\gamma}$ in poly (n)-time for some $\gamma=n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$ run-time, for some γ ?

Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP ${ }_{\gamma}$ for $\gamma \geq n$. No NP-hardness here...

- Can we solve $\operatorname{SVP}_{\gamma}$ in poly (n)-time for some $\gamma=n^{\mathcal{O}(1)}$?
- And with a quantum computer?
- Can we do better than BKZ's $\left(\frac{n}{\log \gamma}\right)^{\mathcal{O}\left(\frac{n}{\log \gamma}\right)}$ run-time, for some γ ?
- What are the practical limits?
http://www.latticechallenge.org

Open problems: practice

There exist practical lattice-based signature and encryption schemes.

Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?

Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?

Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical? Attribute-based encryption? Homomorphic encryption?

Bibliography

AhRe04 D. Aharonov, O. Regev: Lattice problems in NP cap coNP. J. ACM 52(5): 749-765 (2005).
AjDw97 M. Ajtai, C. Dwork: A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. STOC 1997: 284-293.
Aj98 M. Ajtai: The Shortest Vector Problem in L2 is NP-hard for Randomized Reductions (Extended Abstract). STOC 1998: 10-19.
AgDaReSD15 D. Aggarwal, D. Dadush, O. Regev, N. Stephens-Davidowitz: Solving the Shortest Vector Problem in 2^{n} Time via Discrete Gaussian Sampling. Available on ARXIV.
BoVe96 D. Boneh, R. Venkatesan: Hardness of Computing the Most Significant Bits of Secret Keys in Diffie-Hellman and Related Schemes. CRYPTO 1996: 129-142.
Br12 Z. Brakerski: Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. CRYPTO 2012: 868-886.
rLaPeReSt13 Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. Stehlé: Classical hardness of learning with errors. STOC 2013: 575-584.
BrVa11 Z. Brakerski, V. Vaikuntanathan: Efficient Fully Homomorphic Encryption from (Standard) LWE. SIAM J. Comput. 43(2): 831-871 (2014).
ChNg11 Y. Chen, P. Nguyen: BKZ 2.0: Better Lattice Security Estimates. ASIACRYPT 2011: 1-20.
ChSt15 J. H. Cheon, D. Stehlé: Fully Homomophic Encryption over the Integers Revisited. EUROCRYPT 2015.

Bibliography

GePeVa08 C. Gentry, C. Peikert, V. Vaikuntanathan: Trapdoors for hard lattices and new cryptographic constructions. STOC 2008: 197-206.
GoGo98 O. Goldreich, S. Goldwasser: On the Limits of Nonapproximability of Lattice Problems. J. Comput. Syst. Sci. 60(3): 540-563 (2000).
GoVaWe13 S. Gorbunov, V. Vaikuntanathan, H. Wee: Attribute-based encryption for circuits. STOC 2013: 545-554.
HaPuSt11 G. Hanrot, X. Pujol, D. Stehlé: Analyzing Blockwise Lattice Algorithms Using Dynamical Systems. CRYPTO 2011: 447-464.
HaRe07 I. Haviv, O. Regev: Tensor-based Hardness of the Shortest Vector Problem to within Almost Polynomial Factors. Theory of Computing 8(1): 513-531 (2012).
HG01 N. Howgrave-Graham: Approximate Integer Common Divisors. CaLC 2001: 51-66.
Pe14 C. Peikert: Lattice Cryptography for the Internet. PQCrypto 2014: 197-219.
Re03 O. Regev: New lattice-based cryptographic constructions. J. ACM 51(6): 899-942 (2004).
Re05 O. Regev: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009).
ScEu91 C.-P. Schnorr, M. Euchner: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program. 66: 181-199 (1994).

